roi.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180
  1. from __future__ import annotations
  2. import dataclasses
  3. import json
  4. import typing
  5. import cache
  6. def main() -> None:
  7. recipes: list[Recipe] = cache.get('https://api.prunplanner.org/data/recipes')
  8. buildings: dict[str, Building] = {m['Ticker']: m for m in cache.get('https://api.prunplanner.org/data/buildings')}
  9. materials: dict[str, Material] = {m['Ticker']: m for m in cache.get('https://api.prunplanner.org/data/materials')}
  10. raw_prices: list[RawPrice] = cache.get('https://refined-prun.github.io/refined-prices/all.json')
  11. prices: dict[str, Price] = {
  12. p['MaterialTicker']: Price(p['VWAP7D'], p['AverageTraded7D'], p['VWAP30D']) for p in raw_prices # pyright: ignore[reportArgumentType]
  13. if p['ExchangeCode'] == 'IC1'
  14. }
  15. habitation: typing.Mapping[Worker, str] = {
  16. 'Pioneers': 'HB1',
  17. 'Settlers': 'HB2',
  18. 'Technicians': 'HB3',
  19. 'Engineers': 'HB4',
  20. 'Scientists': 'HB5',
  21. }
  22. hab_area_cost: dict[Worker, float] = {}
  23. hab_capex: dict[Worker, float] = {}
  24. for worker, hab in habitation.items():
  25. hab_area_cost[worker] = buildings[hab]['AreaCost'] / 100
  26. hab_capex[worker] = building_construction_cost(buildings[hab], prices) / 100
  27. profits: list[Profit] = []
  28. for recipe in recipes:
  29. if profit := calc_profit(recipe, buildings, hab_area_cost, hab_capex, materials, prices):
  30. profits.append(profit)
  31. profits.sort()
  32. with open('www/roi.json', 'w') as f:
  33. json.dump([dataclasses.asdict(p) for p in profits], f, indent='\t')
  34. def calc_profit(recipe: Recipe, buildings: typing.Mapping[str, Building], hab_area_cost: typing.Mapping[Worker, float],
  35. hab_capex: typing.Mapping[Worker, float], materials: typing.Mapping[str, Material],
  36. prices: typing.Mapping[str, Price]) -> Profit | None:
  37. if len(recipe['Outputs']) == 0:
  38. return
  39. output_prices: dict[str, PriceNonNull] = {}
  40. for output in recipe['Outputs']:
  41. price = prices[output['Ticker']]
  42. if price.vwap_7d is None or price.average_traded_7d is None:
  43. return # skip recipes with thinly traded outputs
  44. output_prices[output['Ticker']] = typing.cast(PriceNonNull, price)
  45. cost = 0
  46. for input in recipe['Inputs']:
  47. if (input_cost := prices[input['Ticker']].vwap_7d) is None:
  48. return # skip recipes with thinly traded inputs
  49. cost += input_cost * input['Amount']
  50. revenue = sum(output_prices[output['Ticker']].vwap_7d * output['Amount'] for output in recipe['Outputs'])
  51. profit_per_run = revenue - cost
  52. building = buildings[recipe['BuildingTicker']]
  53. area = building['AreaCost'] + sum(hab_area_cost[worker] * building[worker] for worker in hab_area_cost)
  54. capex = building_construction_cost(building, prices) + \
  55. sum(hab_capex[worker] * building[worker] for worker in hab_capex)
  56. runs_per_day = 24 * 60 * 60 * 1000 / recipe['TimeMs']
  57. if building['Ticker'] in ('FRM', 'ORC'):
  58. runs_per_day *= 1.1212 # promitor's fertility
  59. worker_consumable_daily_cost = building_daily_cost(building, prices)
  60. cost_per_day = cost * runs_per_day + worker_consumable_daily_cost
  61. lowest_liquidity = min(recipe['Outputs'],
  62. key=lambda output: output['Amount'] / output_prices[output['Ticker']].average_traded_7d)
  63. output_per_day = lowest_liquidity['Amount'] * runs_per_day
  64. logistics_per_area = max(
  65. sum(materials[input['Ticker']]['Weight'] * input['Amount'] for input in recipe['Inputs']),
  66. sum(materials[input['Ticker']]['Volume'] * input['Amount'] for input in recipe['Inputs']),
  67. sum(materials[output['Ticker']]['Weight'] * output['Amount'] for output in recipe['Outputs']),
  68. sum(materials[output['Ticker']]['Volume'] * output['Amount'] for output in recipe['Outputs']),
  69. ) * runs_per_day / area
  70. return Profit([output['Ticker'] for output in recipe['Outputs']], recipe['RecipeName'],
  71. expertise=building['Expertise'],
  72. profit_per_day=(profit_per_run * runs_per_day - worker_consumable_daily_cost),
  73. area=area,
  74. capex=capex,
  75. cost_per_day=cost_per_day,
  76. logistics_per_area=logistics_per_area,
  77. output_per_day=output_per_day,
  78. average_traded_7d=output_prices[lowest_liquidity['Ticker']].average_traded_7d)
  79. def building_construction_cost(building: Building, prices: typing.Mapping[str, Price]) -> float:
  80. return sum(bc['Amount'] * prices[bc['CommodityTicker']].vwap_7d for bc in building['BuildingCosts']) # pyright: ignore[reportOperatorIssue]
  81. def building_daily_cost(building: Building, prices: typing.Mapping[str, Price]) -> float:
  82. consumption = {
  83. 'Pioneers': [('COF', 0.5), ('DW', 4), ('RAT', 4), ('OVE', 0.5), ('PWO', 0.2)],
  84. 'Settlers': [('DW', 5), ('RAT', 6), ('KOM', 1), ('EXO', 0.5), ('REP', 0.2), ('PT', 0.5)],
  85. 'Technicians': [('DW', 7.5), ('RAT', 7), ('ALE', 1), ('MED', 0.5), ('SC', 0.1), ('HMS', 0.5), ('SCN', 0.1)],
  86. 'Engineers': [('DW', 10), ('MED', 0.5), ('GIN', 1), ('FIM', 7), ('VG', 0.2), ('HSS', 0.2), ('PDA', 0.1)],
  87. 'Scientists': [('DW', 10), ('MED', 0.5), ('WIN', 1), ('MEA', 7), ('NST', 0.1), ('LC', 0.2), ('WS', 0.1)],
  88. }
  89. cost = 0
  90. for worker, mats in consumption.items():
  91. workers = building[worker]
  92. for mat, per_100 in mats:
  93. mat_price = prices[mat]
  94. cost += (mat_price.vwap_7d or mat_price.vwap_30d) * workers * per_100 / 100
  95. return cost
  96. Worker = typing.Literal['Pioneers', 'Settlers', 'Technicians', 'Engineers', 'Scientists']
  97. class Recipe(typing.TypedDict):
  98. RecipeName: str
  99. BuildingTicker: str
  100. Inputs: list[RecipeMat]
  101. Outputs: list[RecipeMat]
  102. TimeMs: int
  103. class RecipeMat(typing.TypedDict):
  104. Ticker: str
  105. Amount: int
  106. class Building(typing.TypedDict):
  107. Ticker: str
  108. Expertise: str
  109. AreaCost: int
  110. BuildingCosts: list[BuildingMat]
  111. Pioneers: int
  112. Settlers: int
  113. Technicians: int
  114. Engineers: int
  115. Scientists: int
  116. class BuildingMat(typing.TypedDict):
  117. CommodityTicker: str
  118. Amount: int
  119. class Material(typing.TypedDict):
  120. Ticker: str
  121. Weight: float
  122. Volume: float
  123. class RawPrice(typing.TypedDict):
  124. MaterialTicker: str
  125. ExchangeCode: str
  126. VWAP7D: float | None # volume-weighted average price over last 7 days
  127. AverageTraded7D: float | None # averaged daily traded volume over last 7 days
  128. VWAP30D: float | None
  129. @dataclasses.dataclass(eq=False, frozen=True, slots=True)
  130. class Price:
  131. vwap_7d: float | None
  132. average_traded_7d: float | None
  133. vwap_30d: float | None
  134. @dataclasses.dataclass(eq=False, frozen=True, slots=True)
  135. class PriceNonNull:
  136. vwap_7d: float
  137. average_traded_7d: float
  138. @dataclasses.dataclass(eq=False, frozen=True, slots=True)
  139. class Profit:
  140. output: typing.Collection[str]
  141. recipe: str
  142. expertise: str
  143. profit_per_day: float
  144. area: float
  145. capex: float
  146. cost_per_day: float
  147. logistics_per_area: float
  148. output_per_day: float
  149. average_traded_7d: float
  150. def __lt__(self, other: Profit) -> bool:
  151. if (break_even := self.capex / self.profit_per_day) < 0:
  152. break_even = 10000 - self.profit_per_day
  153. if (other_break_even := other.capex / other.profit_per_day) < 0:
  154. other_break_even = 10000 - other.profit_per_day
  155. return break_even < other_break_even
  156. if __name__ == '__main__':
  157. main()