supply.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. from __future__ import annotations
  2. import sys
  3. import tomllib
  4. import typing
  5. import cache
  6. def main() -> None:
  7. planet = sys.argv[1].casefold()
  8. burn, raw_materials = fio_data(planet)
  9. inventory = {item['MaterialTicker']: item['MaterialAmount'] for item in burn['Inventory']}
  10. materials = {mat['Ticker']: mat for mat in raw_materials}
  11. producing = {item['MaterialTicker']: item for item in burn['OrderProduction']}
  12. net_consumption = []
  13. for c in burn['OrderConsumption'] + burn['WorkforceConsumption']:
  14. net = c['DailyAmount']
  15. if production := producing.get(c['MaterialTicker']):
  16. net -= production['DailyAmount']
  17. if net < 0:
  18. continue
  19. c['net_consumption'] = net
  20. net_consumption.append(c)
  21. vol_per_day = 0.0
  22. weight_per_day = 0.0
  23. target_days = float('inf')
  24. for consumption in net_consumption:
  25. ticker = consumption['MaterialTicker']
  26. vol_per_day += materials[ticker]['Volume'] * consumption['net_consumption']
  27. weight_per_day += materials[ticker]['Weight'] * consumption['net_consumption']
  28. days = inventory.get(ticker, 0) / consumption['net_consumption']
  29. if days < target_days:
  30. target_days = days
  31. print(f'consuming {vol_per_day:.1f}㎥/d')
  32. print(f'consuming {weight_per_day:.1f}t/d')
  33. target_days = round(target_days + 0.05, 1)
  34. while True:
  35. weight_used = volume_used = 0
  36. buy: dict[str, float] = {}
  37. for consumption in net_consumption:
  38. ticker = consumption['MaterialTicker']
  39. avail = inventory.get(ticker, 0)
  40. daily_consumption = consumption['net_consumption']
  41. days = avail / daily_consumption
  42. if days < target_days:
  43. buy[ticker] = (target_days - days) * daily_consumption
  44. weight_used += buy[ticker] * materials[ticker]['Weight']
  45. volume_used += buy[ticker] * materials[ticker]['Volume']
  46. if weight_used > 500 or volume_used > 500:
  47. break
  48. optimal = buy
  49. target_days += 0.1
  50. print('supply for', round(target_days, 1), 'days')
  51. for consumption in net_consumption:
  52. ticker = consumption['MaterialTicker']
  53. avail = inventory.get(ticker, 0)
  54. daily_consumption = consumption['net_consumption']
  55. days = avail / daily_consumption
  56. print(f'{ticker:>3}: {avail:5d} ({daily_consumption:8.2f}/d) {days:4.1f} d', end='')
  57. if need := optimal.get(ticker): # pyright: ignore[reportPossiblyUnboundVariable]
  58. print(f' | {need:8.1f}')
  59. else:
  60. print()
  61. def fio_data(planet: str) -> tuple[PlanetData, typing.Sequence[Material]]:
  62. with open('config.toml', 'rb') as f:
  63. config = tomllib.load(f)
  64. planets: list[PlanetData] = cache.get('https://rest.fnar.net/fioweb/burn/user/' + config['username'],
  65. headers={'Authorization': config['fio_api_key']})
  66. for planet_data in planets:
  67. name = planet_data['PlanetName']
  68. if name.casefold() == planet:
  69. assert planet_data['Error'] is None
  70. break
  71. else:
  72. raise ValueError(planet + ' not found')
  73. materials: list[Material] = cache.get('https://rest.fnar.net/material/allmaterials')
  74. return planet_data, materials
  75. class PlanetData(typing.TypedDict):
  76. PlanetName: str
  77. Error: typing.Any
  78. OrderConsumption: list[Amount]
  79. WorkforceConsumption: list[Amount]
  80. Inventory: list[Inventory]
  81. OrderProduction: list[Amount]
  82. class Amount(typing.TypedDict):
  83. MaterialTicker: str
  84. DailyAmount: float
  85. net_consumption: float
  86. class Inventory(typing.TypedDict):
  87. MaterialTicker: str
  88. MaterialAmount: int
  89. class Material(typing.TypedDict):
  90. Ticker: str
  91. Weight: float
  92. Volume: float
  93. if __name__ == '__main__':
  94. main()